Content:

It is known that every smooth connected surface can be given a Riemannian metric with constant Gauss curvature 1,0 or -1. A classical result due to Minding map is that the surface with this metric is locally isometric to the 2-sphere S^2 , the Euclidean plane E^2 , or the hyperbolic plane H^2 respectively. This results in a geometric structure on the surfaces – namely an atlas consisting of diffeomorphisms between open sets in the surface and open set in S^2 , E^2 or H^2 , such that coordinate changes are given by local isometries of the "model geometry" S^2 , E^2 or H^2 .

Each closed connected surface Σ of genus $g \geq 2$ has a hyperbolic structure – that is a geometric structure modeled on H^2 . The aim of the course is to examine the hyperbolic structures on Σ up to a certain equivalence relation. These form the Teichmüller space \mathcal{T}_g , which has a very rich structure. Topologically it is \mathbb{R}^{6g-6} .

Our approach to \mathcal{T}_g through hyperbolic geometry gives a description of \mathcal{T}_g due to Fenchel and Nielsen in terms of length - and twist parameters.