Introduction to C^* -algebras

3-4 hours of lectures per week.

Lecturer

Klaus Thomsen

Content

A C^* -algebra is a Banach space A which is also an algebra with an involution * which respects the norm in the nicest possible way: $||xx^*|| = ||x||^2$. Examples include the continuous functions C(X) on a compact Hausdorff space X, where the involution is given by complex conjugation: $f^*(\cdot) = \overline{f(\cdot)}$, and the norm is the supremum norm, $||f|| = \sup_{t \in X} |f(t)|$, as well as the algebra of complex $n \times n$ -matrices and more general *-algebras of linear operators. The course will introduce other classes of examples and develop the basic tools for the abstract study of C^* -algebras. The field has developed strong connections with topology, and we shall describe one of the first serious applications of algebraic topology to the structure theory of C^* -algebras; the classification of AF-algebras (a certain type of C^* -algebras) through their K-theory (a notion from algebraic topology).

Prerequisites

Analysis 1