Interaction of Laser Cooled Trapped Ions
with Optical Cavity Fields
Hans Harhoff Andersen, Thomas Lauprêtre, Aurélien Dantan and Michael Drewsen
Department of Physics and Astronomy, Aarhus University, Denmark

Introduction

Interaction between trapped ions and trapped photons

Laser cooled ions
- Can be trapped for hours
- Low temperature (~mk)
 - Cold enough to form an ordered state, so-called ion Coulomb crystals
- 1D, 2D or 3D structures
- Excellent localization, easy to control
- No collisions, long coherence time

Experimental set-up

Large crystals for a quantum memory for light

- Coulomb crystals with few 10s of thousand ions
- On-demand storage and retrieval of light pulses composed of a few photons in a collective excitation of the ensemble
- Goals: high efficiency for storage and retrieval, long storage times

Pinning of ions by optical lattices

Principle
- Standing wave \(\Rightarrow I(z) \propto \sin^2(kz) \)
- Ion \(\rightarrow \) electric dipole \(\propto \vec{E} \)
- Inhomogeneous E-field \(\Rightarrow \) Force \(F(z) \propto \nabla|\vec{E}(x)|^2 \)
- Potential \(V(z) \propto \sin^2(kz) \)

Some results
- Evidence of pinning: difference in scattering rate from symmetric blue and red-detuned lattice fields
- Single ion pinned at the antinode of a 2nd resonant probe field \(\Rightarrow \) Light-ion coupling increased from 50% to 80%

Outlook

- Multimode memory using spatial extension of crystals
- Towards a few-photon counter by fluorescence cycles of the stored excitations
- Use 2-species bi-crystals (e.g. \(^{40}\text{Ca}^+ \& ^{44}\text{Ca}^+\)):
 - Sympathetic cooling
 - Optimize spatial modematching
- Localize ions at antinodes of the standing wave to increase light-ion coupling

Nanofriction: The Frenkel-Kontorova model

The Frenkel-Kontorova model of dry friction: An infinite chain of spring-connected masses in a sinusoidal potential. A similar model, the Frenkel-Kontorova model for trapped ions in an optical potential, can be simulated in an ion trap.

- Uses the Coulomb repulsion and ion trap confinement to generate effective springs
- Cavity field generates sinusoidal potential
 \(\Rightarrow \) Induces phase transition: Stick-slip friction at the nanoscale

Linear Paul traps incorporating cavities in Aarhus

Red Cavity trap (2006-)
- Optical cavity coated for \(D_{3/2} \) to \(P_{1/2} \)
- Optical cavity coated for \(S_{1/2} \) to \(P_{1/2} \)
- Can trap \(\text{Ca}^+ \& \text{Mg}^+ \)
- Quantum memory & photon counter

Blue Cavity trap (2015-)
- Optical cavity coated for \(D_{3/2} \) to \(P_{1/2} \)
- Can trap \(\text{Ca}^+ \& \text{Ba}^+ \)
- Optomechanics & many-body simulation

Funding

- CARDSBERGFONDEN
- VKR
- LUNDBECKFONDEN
- Dansk National Research Foundation
- PICC

Large crystals
- Coulomb crystals with few 10s of thousand ions
- On-demand storage and retrieval of light pulses composed of a few photons in a collective excitation of the ensemble
- Goals: high efficiency for storage and retrieval, long storage times

Motivations
- Quantum QED & quantum optics: light-matter interaction at the few quanta level
- Optomechanics & many-body physics: dynamics of ions in optical potentials

Calcium ions Ca\(^{+}\)
- Produced by photo-ionization
- Inside ultra-high vacuum chamber (~10^-9 mbar)

Linear Paul Trap
- Axial confinement through DC voltage applied on end cap electrodes
- Radial confinement through alternating RF voltage (~MHz) applied on opposite electrode rods

Laser Cooling
- Cooling optical transition at 397 nm
- Repumping optical transition at 866 nm
 \(\Rightarrow \) Imaging ions by collecting scattered light at 397 nm

Linear Optical Cavity
- High reflectivity mirrors
 \(\Rightarrow \) Enhance interaction between light and ion
 \(\Rightarrow \) Generate standing wave potential

Calcium Ions Ca\(^{+}\)
- Produced by photo-ionization
- Inside ultra-high vacuum chamber (~10^-9 mbar)

Linear Paul Trap
- Axial confinement through DC voltage applied on end cap electrodes
- Radial confinement through alternating RF voltage (~MHz) applied on opposite electrode rods

Laser Cooling
- Cooling optical transition at 397 nm
- Repumping optical transition at 866 nm
 \(\Rightarrow \) Imaging ions by collecting scattered light at 397 nm

Linear Optical Cavity
- High reflectivity mirrors
 \(\Rightarrow \) Enhance interaction between light and ion
 \(\Rightarrow \) Generate standing wave potential