VBA introduction course
Part 2

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

From part 1

From the VBA course part 1, you should be familiar with

* Whatis VBA?

* The Macro recorder

* The VBA environment

« Creating a procedure

* Debugqging

* Variables and datatypes
* Functions

* Navigation in VBA

« Commenting

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Agenda for today

Today we will cover the following topics

Controlling program flow:
e If..Then..Else..Endif
* Loops:
* For..Next
* Do While/Until or While-Wend
Arrays
Set Range
Briefly see examples of a message box.

All the topics will be covered with examples and small problems

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Remember how to create a procedure

In the VBA editor click on Insert = Procedure and choose Sub or Function,
depending on which procedure you wish to work in. You can also write the
commands manually

Syntax:
Sub name()
Dim varl as type.......
..code...
End Sub

Function name(vari as type, var2 as type, ...Jas type
..code...
End Function

Analytics Group

Remember to Declare variable types

Remember to ‘Dim’ variable types, I.e.

« ‘as Double’ (Numeric)
« ‘as Integer’ (Rounded number)

« ‘as String’ (Text)

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

If-sentences

Used when there are certain conditions which must be met when choosing
between two or more different options.

There are many ways to formulate the if-sentences.
The simplest way to code the condition is by using the "One-Line If Statement”.

Function Functionnamel(varl, var2...)
If ..statement. Then ..do someting. Else ...do something else...

end function

Ex.:
Function Vbafunction(x)
If x> 1 Then vbafunction = 1 Else vbafunction = x

end function

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

If-sentences

[f-sentences can also be applied by using multiple lines. The code is then given by.

Function Functionname(varl, var2..)
If Value > 0 Then
strike = Value
Else
strike = 0
End If
end function

The code can also be extended as an ”If - Elself - Statement”, which is shown in the table
below below.

If condition then If condition then If condition then
...code... ...code... ...code...
End if Else Elseif condition then
...code... ...code...
End if Else
...code...
End if

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

If-sentences

The if-conditions can be extended even further by writing:

If Condition1 Then
Statement...
Elself Condition2 Then
Statement ...
Elself Condition3 Then
Statement ...
[..More Elselfs...]
Else
Statement ...

End If

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Useful operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to/different from
Or Or

And And

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 1

We should code a function named example I, which will provide the rate of a loan,
based on the actual rate.

If the actual rate is below 1%, then the rate of the loan should be 1%.

If the actual rate is between 1% and 4% the rate of the loan should be the actual rate.

If the actual rate is above 4%, then the rate of the loan should be 4%.

Actual rate Rate of loan

] -o0; 1%| 1%
[1% - 4 %] Actual rate
[4% - oo] 4%

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 1

[Exercisel(x) }

Code the following if-sentence:

Yes
3 19 . 1y [Exercisel = ”A" H X=1]
Use the variabletype "string

for the function exercise l. Ves i
[Exercisel ="B” F[X=2]
Use the variabletype integer for No
: Yes
the variable x. [Exercisel = "C” Kk X =3 }
No
Yes
[Exercisel ="D” H X>3]
Yes P

[Exercisel = ”Value below 1” F[X<1 }

Analytics Group

See more at www.asb.dk/ag

http://www.asb.dk/ag

School of Business

Exercise 2

You are to code a function, which will determine the annual coupon of a bond. The
annual coupon is calculated as:

C=FxR (F=Facevalue, R = Rate)

The rate is determined by the classification of the bond. The classification table to the
right shows the coupon rates.

« After you have coded the function, assign a Bond type

help text to the function, which will help you when AAA 3,0%

. _ AA 4,0%

you locate your function through the Insert Function A 50%
Wizard B 6.0%
else 8,0%

Hint: You coul/d (but don’t have to) use the function "Ucase(bond)” in order for Excel to be
indifferent between capital letters and small letters. (e.g. "AAA” and "aaa”).

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 3 - do at home

_ [Exercise3(x,y) }
Code the following

function in Excel. [Exercise3 = 1 J
Yes Yes (—
Be aware, that there _ 1 i &@
now is 2 variables, [Exercise3 = 2) NG
instead of 1. No
Exercise3 =3
' ' L) Yes Yes (—
Hint Use If - Y>5 X <-10
statements within a e _)
if-statement in order | EXercise3 =4 | No
to make this code) . A
correct. Exercise3 =5 Yes Yes .
‘ ’ X=Y Y>5
Exercise3 =6 No
Source - Benninga!)
[Exercise3 =7 J
See more at www.asb.dk/ag No

Analytics Group

http://www.asb.dk/ag

and Social Sciences

Loops - Iterations

For...Next

Loops are used to run the same piece of code repeatedly. For those of
you used to SAS coding, this should be familiar, as loops are often used

when coding in SAS.

The For..Next loop is found in three versions:

Simple loop Simple loop with step Simple loop with reverse step

Fori=1To 10 Fori=0To30step3 | Fori=10To O step -2
...code... ...code... ...code...
Next | Next / Next J

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 2

We would like to write a function, which calculates the present value of a given
cash flow for & periods.

The formula should be well known and is defined as:

CF CF CF CF

NewPVICE.D) = it aa e T A+ T a0t T e

We assume a fixed rate and a fixed cash flow throughout the 5 year period.

Source: Benninga, exercise 37,3,

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 4

You should write a function, which calculates the present value of a given cash
flow for n periods.

The formula is once again the same, however now we have the number of
periods as another variable in the code.

CF

Exercise5(CF,r,n) = R
o (1+71)

We assume a fixed rate and a fixed cash flow

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

Check your results

CF: Cash Flow =6
rr Rate = 5%
Nn: Number of Years =

PV: Present Value =25.98

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

Loops - Iterations

Do...while/until...loop

We don’t always know how many times the piece of code must be run. If this is the case
we can use the do loop.

Two versions:

-Do While: repeat code as long as certain conditions are met.
-Do until: repeat code until a certain condition is met.

The Do loop syntax is:

Do [While/Until] condition

..code...

Loop

While...Wend operation can also be used.

Note! Make sure the loop has an end. Otherwise we have an infinite loop [ESC].

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 3

We want to code a function, which provide information about the
number of years until a certain amount of investment is met.

Each year, we should deposit an amount of money. This amount is fixed
for all years.

We receive interest on the accumulated amount of investment each
year.

The function should have 3 variables:
* Total investment required

* Deposit invested each year

* Rate of return on the investment

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 3 - Extended

We now want to extend the previous example by introducing
uncertainty.

Each year, the person will bet on the lottery - if he/she wins the big
score the total investment is assumed to be met.

Excel can only generate from a uniform distribution [0;1].

We want to generate from a normal distribution (even though it does
not make sense in this particular case).

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 3 - Extended

standard Gaussian CDF

Fiz)

1. 5elect Prob in Function
Z. Find. Corresponding I-score (inv)

2. Draw from a uniform distrivtion -
Insert to a std. Nermal distribution

4_I|f the Draw is lower [mors
negative) than the corresponding Z-
score then you have won the lottery

I-scors

The transformation to the gaussion distribution iz of no uze what =0 everin thiz example,
Howewer, it has been added az an example to show how to draw from another distr.

than the uniform distribution

AN

See more at www.asb.dk/ag
Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 5

Create a function for a loan. You should incorporate an interest rate and a
payment, which must be payed annually. The function should have 3
variables:

* |nitial loan amount
* |nterest rate
* Annual payment

Ex:

A man buys a car today at a price of $30,000 and he borrows at an interest
rate of 10%.

He pays $5,000 up front.

How many years will he have to repay $5,000 before he has paid of his
entire loan?

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 6 - do at home

From CFll you should be familiar with the formula of Black & Scholes

Create a function that returns the Black-Scholes value for put and call options (Note the
model is including dividends as Merton (1973)).

The black-scholes formula is given by

CIn(S/X)+(r-q+o°/2)T

_ Q% L *xpa T di
call =S*N(d,)*e X*e N(d,) —"
put=X *e " N(-d,)-S*N(-d,)*e " d2=dl-o~T

Input variables:

Spot (8), Strike (X), Time to maturity (T), Volatility (v), Risk free interest rate (r), dividend
yield (q), CallPut (o)

N() = cumulative normal distribution function

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 6 - results

You can check if your formula is valid. The result for a put and call option with
the following input should yield

Spot, S: 100

Strike, X: 90

Volatility, V: 40 %

Risk free rate, r: 10 %
Dividend yield, g: 5 %
Time to maturity, T: 1

Put value: 8,1762
Cadll value: 21,8638

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 4

This exercise combines navigation in Excel with loops.

Make a subroutine that can create a 20x20 table like the one shown to

=

the rlght 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19| 20

6 &8 10 12 14 18 18 20 22 24 26 28 30 32 34 36 38 40
9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 6l
12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
10 15 20 25 30 35 40 45 50 535 60 65 70 75 80 85 90 95 100
12 18 24 30 36 42 48 54 60 66 72 78 B84 90 96 102 108 114 120
14 21 28 35 42 49 56 63 70 7F7 84 91 98 105 112 119 136 133 140
16/ 24 32 40 48 56 64 72 B0 88 96 104 112 120 128 136 144 152 160
18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
200 30 40 50 o0 70 80 90 100 110 120 130 140 150 160 170 180 130 200
22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
26| 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
28| 42 56/ 70| 84| 98 112 126 140 154 168 182 196 210 224 238 252 266 280
30| 45 60 75 90/105 120 135 150|165 180 195 210 225 240 255|270 285 300
32 48 64 80 96112 128 144 160 176 192 208 224 240 256 272 288 304 320
34 51 68 85102 119 136 133 170 187 204 221 238 235 272 289 306 323 340
36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
38 57 7o 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
40 60 80 100 120 140 160 180 200 220 240 280 280 300 320 340 360 380 400

L= I = R R

Hint: use the VBA function cells(, j)

L I s RN I TR W R S W6 R (]

b=
L]

Sum all the numbers into a
single cell.

SRR e e
NN =R W Sy TE I

Hint: use the worksheetfunction sum’...!

RN
(= IRV]

The number should be 44,100

See more at www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Arrays

Anytime you need to loop through the same code to grab different variables,
you should consider using an array to store those variables. This will often
reduce the amount of code, and usually make the code more efficient than
non-array code.

For instance if you need to store a numeric value for each day of the year. You
could declare 365 separate numeric variables which is a lot of work and makes
your code run slower. Instead you should create an array to store all the data in
one variable. The array itself is a single variable with multiple elements, where
each element can contain one piece of data.

You can add as many dimensions to your array as you like, but beware, the
more dimensions your arrays get, the more complex they become to manage.

Arrays can be used in subs as well as in functions.

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

Arrays

Arrays can be compared to columns in Excel. They are just invisible to the user and exist in the
memory of the computer. When declaring an array, we must decide how many spaces to
include. Spaces can be compared to the number of rows in a column.

Note: Array’s start by default at index nr=0, so if we want 3 places, only set number of rows to 2.

A standard array is initialized as

3 Arr(0)

Dim arrayname(upper index) As type] Arr(1)
Arr(2)

Dim Arr(7) prr(3)

Arr(0) = 3 Arr(4)

Arr(1) =] Arr(5)

Arr(6)

Arr(7)

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Two dimensional array

A two dimensional array can again be compared to an Excel worksheet. Now
we just have the option of including multiple columns.

Dim arrayname(UMX) As type

(upper ROW index, upper COLUMN index)

0 1
3]
Dim Arr(7,1) 5 /
Arr(0,0) = 3 /
Arr(1,0) =5
Arr(0,1) =1
Arr(1,1) = 4

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

Arrays

The dimensions of an array can also be set with exact numbering. i.e. if we want an
array with the indexed rows 5-15:

Dim arr(5 to 15)
Equivalently for two dimensions with rows 5-15 and columns 10-20:

Dim arr(5to 15, 10 to 20)

We can also declare a dynamic array, by leaving the dimensions empty.
Dim arrayname() As type

The array can be resized as the program is running

ReDim arrayname(index) As type

Remember to use index numbers when working with arrays

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

Arrays

Remark

You can use the Option Base statement to specify the first index number of an array. So by
writing

Option Base 1

at the beginning of the module, you will obtain that all your arrays will start with index 1, i.e. the
statement

Dim arr(7) as Type
Is equivalent to the statement

Dim arr(1 to 7) as Type

The default is set to O.

Analytics Group

School of Business

and Social Sciences

Example 5

In this example we want to create a subroutine which provides the numbers
from 1 to 100 and store them in an array.

Finally we want to output the content of the array to our spreadsheet.

Analytics Group

School of Business

and Social Sciences

Exercise 7

This is Example 4 but solved using arrays.

Make a subroutine that can create a 20x20 table like the one shown to

the right.

Hint: You have to define your array as two
Dimensional

Sum all the numbers into a
single cell.

Hint: use the worksheetfunction sum’...!

The number should be 44,100

See more at www.asb.dk/ag

LN < T R e O S

[I R I T R R R S
(=Rt - I I = R W SR TE I I S

L= I = R R

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

3

6

9
12
15
18
21
24
27
30
33
36
3g
42
45
48
31
34
57
60

4

g
12
16
20
24
28
32
36
40
44
48
52
56
B0
64
Ga
72
Fis

5
10
15
20
25
3o
35
40
45
50
55
60
65
70
73
80
83
90
95

80/ 100

6 7 & 9 10
12 14 16 18 20
18 21 24 27 30
24 23 32 36 40
30 35 40 45 50
ig 42 48 54 60
42 49 58 63 70
48 56 64 72 80
34 83 72 81 350
60 70 380 90 100
66 77 88 99 110
72 84 96 108 120
78 91 104 117 130
84 98 112 126 140
90 105 120 135 150
96112 128 144 160

102 119 136|153 170
108 126 144 162 180
114 133 152 171 130
120 140 160 180 200

11 12 13 14 15
22 24 26 28 30
33 36 39 42 45
44 48 52 56 60
55 60 85 70 75
66 72 T8 84 90
77 B84 91 98 105
88 96 104 112 120
99108 117 126 135
110 120130 140 150
121 132 143 154 165
132 144 156 168 180
143 156 169 182 195
154 168 182 196 210
165 180 195 210 225
176 192 208 224 240
187 204 221 238 235
198 216 234 252 270
209 228 247 266 285
220 240 260 280 300

16/ 17 18 19| 20
32 34 36 38 40
43 51 54 57 60
64 88 72 Vo &0
80 85 90 95 100
96 102 108 114 120
112 119 126|133 140
128 136 144 152 160
144 153 162 171 180
160 170 180 190 200
176 187 198 209 220
192 204 216 228 240
208 221 234|247 260
224 238 252 266 280
240 255 270 285 300
256 272 288 304 320
272 289 306 323 340
288 300 324 342 360
304 323 342 381 380
320 340 360 380 400

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Using loops to read variables into arrays

You saw before how to store values in an array and paste it to your spreadsheet. Now
we will show how to read a range from the spreadsheet into an array and use the data
within the array to do calculations.

Whenever you read data from a range into an array the type of the array HAS to be of
type variant,

Dim arrayname() As Variant

When you read changing/dynamic ranges into your array within a loop the syntax gets
a little more complicated. An example:

Fori=1To 100
arrayname = Range("a" & i & ":a" & i + 10).Value
Next |
This results in a array with 10 data points.

Analytics Group

School of Business

and Social Sciences

Example 6

* Open the spreadsheet Reading numbers.xIsx

« The sheet contains 36 data points which we want to calculate a
smoothing average for. The smoothing average should be
calculated as a simple average using 3 data points at a time.

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Set Range

When working with subroutines it might come in handy to refer to a
range as:

Set range = Worksheets(" worksheetname"). Range(“XX", “ YY)
Example:
Set optiondata = Worksheets("Option_Data").Range("A12", "C193")

Then we can refer to the range optiondatalater in the code instead of
refering to specific cells.

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Example 7

* Open the spreadsheet Option Data.xlsx

* The spreadsheet contains put and call prices for a number of options with
different strikes, but with fixed time to maturity and interest rate.

« All options are written on the same underlying stock, so the spot is also the
same for all options

« No dividends are assumed (g=0).

Task: Create a routine that will look through all call options and see if the upper
bound is violated - if a violation is found, a message box should address the
location of the violation.

Upper bound violation (call): C > S(0)

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Exercise 8

* Use the spreadsheet Option Data.xlsx

« Create a subroutine that will look through the put prices and locate the first
upper bound violation (if any).

« If aviolation is found - a message box should address the location
* If no violation is found - a message box should indicate this.

Upper bound violation (put): P > K* exp(- T*r)
(K=strike)

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

School of Business

and Social Sciences

Advanced exercise 9 - do at home

* Openthe Excel sheet Beta Assignment.xIsx

« We want to calculate the rolling beta for a share(Y) using S&P500(X)
index as proxy for the market index.

* Rolling beta is calculated as ordinary beta using a regression.
However, here we roll the observations over for each regression. The
first beta is calculated using data from observations 1:60. The second
for using 2:61 and so on.

* You should end up with 300 beta estimates.

« Hint:Use application.worksheetfunction.Slope(Y;X) to calculate each
beta

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

Recommended readings

For coding in the course ‘Financial Engineering’ it might be a helpful to
read the following chapters in Benninga, Simon - Financial Modeling:

» Chapter 36 - User-Defined functions with VBA
 Chapter 37 - Types and Loops
 Chapter 39 - Arrays

If you wan't to do some exercises, then it is recommended that you
solve:

« Chapter 36: Ex: 1,2,3,4,5,6
« Chapter 37: Ex: 3,4,5,6,7,8

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

End of VBA courses

Thoughts to live by as a programmerl

* Programming is about being lazy!

* Nothing is impossible, when it comes to programming
 Programming is learned by trial-and-error

Remember to evaluate the course on:

au.dk/it 2 For Students =2 IT at School of Business and
Social Sciences 2 VBA - Course Evaluation

www.asb.dk/ag

Analytics Group

http://www.asb.dk/ag

