
VBA introduction course

Part 2

For

 Financial Engineering // MSc Finance

By the Analytics Group

See more at www.asb.dk/ag

http://www.asb.dk/ag

 From part 1

See more at www.asb.dk/ag

From the VBA course part 1, you should be familiar with

• What is VBA?

• The Macro recorder

• The VBA environment

• Creating a procedure

• Debugging

• Variables and datatypes

• Functions

• Navigation in VBA

• Commenting

http://www.asb.dk/ag

Agenda for today

See more at www.asb.dk/ag

Today we will cover the following topics

• Controlling program flow:

• If…Then…Else…Endif

• Loops:

• For…Next

• Do While/Until or While-Wend

• Arrays

• Set Range

• Briefly see examples of a message box.

All the topics will be covered with examples and small problems

http://www.asb.dk/ag

Remember how to create a procedure

In the VBA editor click on Insert  Procedure and choose Sub or Function,

depending on which procedure you wish to work in. You can also write the

commands manually

Syntax:

Sub name()

Dim var1 as type…….

…code…

End Sub

Function name(var1 as type, var2 as type, ….) as type

…code…

End Function

4

Remember to Declare variable types

Remember to ‘Dim’ variable types, i.e.

• ‘as Double’ (Numeric)

• ‘as Integer’ (Rounded number)

• ‘as String’ (Text)

See more at www.asb.dk/ag

http://www.asb.dk/ag

If-sentences

Used when there are certain conditions which must be met when choosing
between two or more different options.

There are many ways to formulate the if-sentences.

The simplest way to code the condition is by using the ”One-Line If Statement”.

 Function Functionname(var1, var2...)

 If ..statement.. Then ..do someting.. Else ...do something else...

 end function

Ex.:

 Function Vbafunction(x)

 If x > 1 Then vbafunction = 1 Else vbafunction = x

 end function

See more at www.asb.dk/ag

http://www.asb.dk/ag

If-sentences

If-sentences can also be applied by using multiple lines. The code is then given by.

Function Functionname(var1, var2...)

 If Value > 0 Then

 strike = Value

 Else

 strike = 0

 End If

end function

The code can also be extended as an ”If – ElseIf – Statement”, which is shown in the table
below below.

See more at www.asb.dk/ag

Simple Else Elseif

If condition then

 …code…

End if

If condition then

 …code…

Else

 …code…

End if

If condition then

 …code…

Elseif condition then

 …code…

Else

 …code…

End if

http://www.asb.dk/ag

If-sentences

The if-conditions can be extended even further by writing:

See more at www.asb.dk/ag

If Condition1 Then

 Statement…

ElseIf Condition2 Then

 Statement …

ElseIf Condition3 Then

 Statement …

 […More ElseIfs…]

Else

 Statement …

End If

http://www.asb.dk/ag

Useful operators

See more at www.asb.dk/ag

Operator Meaning

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to/different from

Or Or

And And

http://www.asb.dk/ag

Example 1

Actual rate Rate of loan

] - ∞; 1%[1%

[1% - 4 %] Actual rate

[4% - ∞] 4%

See more at www.asb.dk/ag

We should code a function named example1, which will provide the rate of a loan,

based on the actual rate.

If the actual rate is below 1%, then the rate of the loan should be 1%.

If the actual rate is between 1% and 4% the rate of the loan should be the actual rate.

If the actual rate is above 4%, then the rate of the loan should be 4%.

http://www.asb.dk/ag

Exercise 1

Code the following if-sentence:

Use the variabletype ”string”

for the function exercise1.

Use the variabletype integer for

the variable x.

See more at www.asb.dk/ag

Exercise1(x)

X = 1

X = 2

X = 3

X > 3

X < 1

Exercise1 = ”A”

Exercise1 = ”B”

Exercise1 = ”D”

Exercise1 = ”C”

Exercise1 = ”Value below 1”

Yes

Yes

Yes

Yes

Yes

No

No

No

No

http://www.asb.dk/ag

Exercise 2

You are to code a function, which will determine the annual coupon of a bond. The

annual coupon is calculated as:

C = F x R (F = Facevalue, R = Rate)

The rate is determined by the classification of the bond. The classification table to the

right shows the coupon rates.

• After you have coded the function, assign a

help text to the function, which will help you when

you locate your function through the Insert Function

Wizard

Hint: You could (but don’t have to) use the function ”Ucase(bond)” in order for Excel to be

indifferent between capital letters and small letters. (e.g. ”AAA” and ”aaa”).

See more at www.asb.dk/ag

Bond type Rate

AAA 3,0%

AA 4,0%

A 5,0%

B 6,0%

else 8,0%

http://www.asb.dk/ag

Exercise 3 – do at home

Code the following

function in Excel.

Be aware, that there

now is 2 variables,

instead of 1.

Hint: Use if -

statements within a

if-statement in order

to make this code

correct.

Source – Benninga!

See more at www.asb.dk/ag

Exercise3(x,y)

X > 10
Yes

Yes

No

No

X <-10

Y > 5
Yes

No
Exercise3 = 7

Y > 5

Y > 5

X = Y

Exercise3 = 6

Exercise3 = 5

Exercise3 = 4

Exercise3 = 3

Exercise3 = 2

Exercise3 = 1

No

Yes

No

Yes

No

Yes

http://www.asb.dk/ag

Loops - Iterations

For...Next

Loops are used to run the same piece of code repeatedly. For those of

you used to SAS coding, this should be familiar, as loops are often used

when coding in SAS.

The For…Next loop is found in three versions:

See more at www.asb.dk/ag

Simple loop Simple loop with step Simple loop with reverse step

For i = 1 To 10

…code…

Next i

For i = 0 To 30 step 3

...code...

Next i

For i = 10 To 0 step -2

...code...

Next i

http://www.asb.dk/ag

Example 2

We would like to write a function, which calculates the present value of a given

cash flow for 5 periods.

The formula should be well known and is defined as:

We assume a fixed rate and a fixed cash flow throughout the 5 year period.

Source: Benninga, exercise 37,3,

See more at www.asb.dk/ag

𝑁𝑒𝑤𝑃𝑉 𝐶𝐹, 𝑟 =
𝐶𝐹

1 + 𝑟 1
+
𝐶𝐹

1 + 𝑟 2
+
𝐶𝐹

1 + 𝑟 3
+
𝐶𝐹

1 + 𝑟 4
+
𝐶𝐹

1 + 𝑟 5

http://www.asb.dk/ag

Exercise 4

You should write a function, which calculates the present value of a given cash

flow for n periods.

The formula is once again the same, however now we have the number of

periods as another variable in the code.

We assume a fixed rate and a fixed cash flow

See more at www.asb.dk/ag

𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒5 𝐶𝐹, 𝑟, 𝑛 =
𝐶𝐹

1 + 𝑟 𝑖

𝑛

𝑖=1

http://www.asb.dk/ag

Check your results

See more at www.asb.dk/ag

CF: Cash Flow = 6

r: Rate = 5%

n: Number of Years = 5

PV: Present Value = 25.98

http://www.asb.dk/ag

Loops - Iterations

Do...while/until…loop

We don’t always know how many times the piece of code must be run. If this is the case
we can use the do loop.

Two versions:

-Do While: repeat code as long as certain conditions are met.

-Do until: repeat code until a certain condition is met.

The Do loop syntax is:

Do [While/Until] condition

…code…

Loop

While…Wend operation can also be used.

Note! Make sure the loop has an end. Otherwise we have an infinite loop [ESC].

See more at www.asb.dk/ag

http://www.asb.dk/ag

Example 3

We want to code a function, which provide information about the
number of years until a certain amount of investment is met.

Each year, we should deposit an amount of money. This amount is fixed
for all years.

We receive interest on the accumulated amount of investment each
year.

The function should have 3 variables:

• Total investment required

• Deposit invested each year

• Rate of return on the investment

See more at www.asb.dk/ag

http://www.asb.dk/ag

Example 3 - Extended

We now want to extend the previous example by introducing

uncertainty.

Each year, the person will bet on the lottery – if he/she wins the big

score the total investment is assumed to be met.

Excel can only generate from a uniform distribution [0;1].

We want to generate from a normal distribution (even though it does

not make sense in this particular case).

See more at www.asb.dk/ag

http://www.asb.dk/ag

Example 3 - Extended

See more at www.asb.dk/ag

http://www.asb.dk/ag

Exercise 5

Create a function for a loan. You should incorporate an interest rate and a
payment, which must be payed annually. The function should have 3
variables:

• Initial loan amount

• Interest rate

• Annual payment

Ex:
A man buys a car today at a price of $30,000 and he borrows at an interest
rate of 10%.

He pays $5,000 up front.

How many years will he have to repay $5,000 before he has paid of his
entire loan?

See more at www.asb.dk/ag

http://www.asb.dk/ag

Exercise 6 – do at home

From CFII you should be familiar with the formula of Black & Scholes

Create a function that returns the Black-Scholes value for put and call options (Note the

model is including dividends as Merton (1973)).

The black-scholes formula is given by

Input variables:

Spot (S), Strike (X), Time to maturity (T), Volatility (v), Risk free interest rate (r), dividend

yield (q), CallPut (o)

N() = cumulative normal distribution function

See more at www.asb.dk/ag

Tdd

T

TqrXS
d












12

)2/()/ln(
1

2

1 2

2 1

* () * * ()

* () * () *

qT rT

rT qT

call S N d e X e N d

put X e N d S N d e

 

 

 

   

http://www.asb.dk/ag

Exercise 6 - results

You can check if your formula is valid. The result for a put and call option with

the following input should yield

Spot, S: 100

Strike, X: 90

Volatility, V: 40 %

Risk free rate, r: 10 %

Dividend yield, q: 5 %

Time to maturity, T: 1

Put value: 8,1762

Call value: 21,8638

See more at www.asb.dk/ag

http://www.asb.dk/ag

Example 4

This exercise combines navigation in Excel with loops.

Make a subroutine that can create a 20x20 table like the one shown to

the right.

Hint: use the VBA function cells(i, j)

Sum all the numbers into a

 single cell.

Hint: use the worksheetfunction ”sum”…!

The number should be 44,100
See more at www.asb.dk/ag

http://www.asb.dk/ag

Arrays

Anytime you need to loop through the same code to grab different variables,

you should consider using an array to store those variables. This will often

reduce the amount of code, and usually make the code more efficient than

non-array code.

For instance if you need to store a numeric value for each day of the year. You

could declare 365 separate numeric variables which is a lot of work and makes

your code run slower. Instead you should create an array to store all the data in

one variable. The array itself is a single variable with multiple elements, where

each element can contain one piece of data.

You can add as many dimensions to your array as you like, but beware, the

more dimensions your arrays get, the more complex they become to manage.

Arrays can be used in subs as well as in functions.

See more at www.asb.dk/ag

http://www.asb.dk/ag

Arrays

Arrays can be compared to columns in Excel. They are just invisible to the user and exist in the

memory of the computer. When declaring an array, we must decide how many spaces to

include. Spaces can be compared to the number of rows in a column.

Note: Array’s start by default at index nr=0, so if we want 3 places, only set number of rows to 2.

A standard array is initialized as

 Dim arrayname(upper index) As type

See more at www.asb.dk/ag

3

1

Dim Arr(7)

Arr(0) = 3

Arr(1) = 1

Arr(0)

Arr(1)

Arr(2)

Arr(3)

Arr(4)

Arr(5)

Arr(6)

Arr(7)

http://www.asb.dk/ag

Two dimensional array

A two dimensional array can again be compared to an Excel worksheet. Now

we just have the option of including multiple columns.

Dim arrayname(upper column index, upper row index) As type

 (upper ROW index, upper COLUMN index)

See more at www.asb.dk/ag

1

4 Dim Arr(7,1)

Arr(0,0) = 3

Arr(1,0) = 5

Arr(0,1) = 1

Arr(1,1) = 4

3

5

0 1

http://www.asb.dk/ag

Arrays

See more at www.asb.dk/ag

The dimensions of an array can also be set with exact numbering. i.e. if we want an
array with the indexed rows 5-15:

Dim arr(5 to 15)

Equivalently for two dimensions with rows 5-15 and columns 10-20:

Dim arr(5 to 15, 10 to 20)

We can also declare a dynamic array, by leaving the dimensions empty.

Dim arrayname() As type

The array can be resized as the program is running

ReDim arrayname(index) As type

Remember to use index numbers when working with arrays

http://www.asb.dk/ag

Arrays

Remark

You can use the Option Base statement to specify the first index number of an array. So by
writing

Option Base 1

at the beginning of the module, you will obtain that all your arrays will start with index 1, i.e. the
statement

 Dim arr(7) as Type

Is equivalent to the statement

 Dim arr(1 to 7) as Type

The default is set to 0.

30

Example 5

In this example we want to create a subroutine which provides the numbers
from 1 to 100 and store them in an array.

Finally we want to output the content of the array to our spreadsheet.

31

Exercise 7

This is Example 4 but solved using arrays.

Make a subroutine that can create a 20x20 table like the one shown to

the right.

Hint: You have to define your array as two

 Dimensional

Sum all the numbers into a

 single cell.

Hint: use the worksheetfunction ”sum”…!

The number should be 44,100

See more at www.asb.dk/ag

http://www.asb.dk/ag

Using loops to read variables into arrays

You saw before how to store values in an array and paste it to your spreadsheet. Now

we will show how to read a range from the spreadsheet into an array and use the data

within the array to do calculations.

Whenever you read data from a range into an array the type of the array HAS to be of

type variant.

 Dim arrayname() As Variant

When you read changing/dynamic ranges into your array within a loop the syntax gets

a little more complicated. An example:

 For i = 1 To 100

 arrayname = Range("a" & i & ":a" & i + 10).Value

 Next i

This results in a array with 10 data points.

33

Example 6

• Open the spreadsheet Reading numbers.xlsx

• The sheet contains 36 data points which we want to calculate a

smoothing average for. The smoothing average should be

calculated as a simple average using 3 data points at a time.

See more at www.asb.dk/ag

http://www.asb.dk/ag

Set Range

When working with subroutines it might come in handy to refer to a

range as:

Set range = Worksheets(“worksheetname").Range(“XX", “YY")

Example:

Set optiondata = Worksheets("Option_Data").Range("A12", "C193")

Then we can refer to the range optiondata later in the code instead of

refering to specific cells.

See more at www.asb.dk/ag

http://www.asb.dk/ag

Example 7

• Open the spreadsheet Option Data.xlsx

• The spreadsheet contains put and call prices for a number of options with

different strikes, but with fixed time to maturity and interest rate.

• All options are written on the same underlying stock, so the spot is also the

same for all options

• No dividends are assumed (q=0).

Task: Create a routine that will look through all call options and see if the upper

bound is violated – if a violation is found, a message box should address the

location of the violation.

Upper bound violation (call): C > S(0)

See more at www.asb.dk/ag

http://www.asb.dk/ag

Exercise 8

• Use the spreadsheet Option Data.xlsx

• Create a subroutine that will look through the put prices and locate the first

upper bound violation (if any).

• If a violation is found – a message box should address the location

• If no violation is found – a message box should indicate this.

Upper bound violation (put): P > K * exp(- T * r)

 (K=strike)

See more at www.asb.dk/ag

http://www.asb.dk/ag

Advanced exercise 9 – do at home

See more at www.asb.dk/ag

• Open the Excel sheet Beta Assignment.xlsx

• We want to calculate the rolling beta for a share(Y) using S&P500(X)

index as proxy for the market index.

• Rolling beta is calculated as ordinary beta using a regression.

However, here we roll the observations over for each regression. The

first beta is calculated using data from observations 1:60. The second

for using 2:61 and so on.

• You should end up with 300 beta estimates.

• Hint:Use application.worksheetfunction.Slope(Y;X) to calculate each

beta

http://www.asb.dk/ag

Recommended readings

For coding in the course ‘Financial Engineering’ it might be a helpful to

read the following chapters in Benninga, Simon – Financial Modeling:

• Chapter 36 – User-Defined functions with VBA

• Chapter 37 – Types and Loops

• Chapter 39 – Arrays

If you wan’t to do some exercises, then it is recommended that you

solve:

• Chapter 36: Ex: 1,2,3,4,5,6

• Chapter 37: Ex: 3,4,5,6,7,8

See more at www.asb.dk/ag

http://www.asb.dk/ag

End of VBA courses

Thoughts to live by as a programmer!

• Programming is about being lazy!

• Nothing is impossible, when it comes to programming

• Programming is learned by trial-and-error

Remember to evaluate the course on:

au.dk/it  For Students  IT at School of Business and

Social Sciences  VBA  Course Evaluation

See more at www.asb.dk/ag

http://www.asb.dk/ag

